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ABSTRACT

In this paper we present our 1st place solution of the WSDM Web-
Tour 21 Challenge. The competition task was to predict the city of
the last booked hotel in a user trip, based on the previously visited
cities. For our final solution, we designed three deep learning archi-
tectures based on Multilayer Perceptron (MLP), Gated Recurrent
Units (GRU) and XLNet (Transformer) building blocks. A shared
component among the architectures was a Session-based Matrix
Factorization head (SMF), which learns a linear mapping between
the item (city) embeddings and the session (trip) embeddings to
generate recommendations by a dot product operation. Our final
leaderboard result was 0.5939 for precision@4 and scored 2.8% bet-
ter than the second solution. We published our implementation,
using RAPIDS cuDF, TensorFlow and PyTorch, on github.com?.
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« Information systems — Personalization; Recommender sys-

tems; Learning to rank.

KEYWORDS

Recommender Systems, WSDM WebTour 21 Challenge, Deep Learn-
ing, Sequential recommendation, MLP, GRU, Transformer, Matrix
Factorization

1 INTRODUCTION

Recommender systems (RecSys) have become a key component in
many online services, such as e-commerce, social media, news ser-
vice, or online video streaming. Sequence-based recommendation
is a highly relevant task in real-world applications, like predicting
the next item in the online shopping cart, the next online course a
student will choose, or the next travel destination of a traveller.

*Authors contributed equally to this research.
Uhttps://github.com/rapidsai/deeplearning/tree/main/WSDM2021

In this paper, we present our 1st place solution for the Book-
ing.com WSDM WebTour 21 Challenge organized by Booking.com
for the WebTour workshop at ACM WSDM 2021 [1].

The task was to recommend (predict) the final city destination
for a traveller trip given their previous booking history within the
trip. The competition evaluation metric was Precision@4, which
scored true only if the correct next city was among the top-4 rec-
ommendations (regardless the order) out of the about 40,000 cities
found in the dataset.

Previous recent RecSys competitions often require identifying
the positive interactions given a set of positives and negatives (e.g.
click-through rate (CTR) prediction), which somehow shifts the
task from generating recommendations to a binary classification
problem. In that setting, the focus is often on creating features
to separate positive from negative examples rather than model
design [4]. Boosted trees algorithms often performed well in such
binary classification tasks, as observed in the last RecSys Challenge
competitions [3] [5].

Differently from previous RecSys competitions, this dataset con-
tained only positive examples and deep learning based solutions
worked best for us, challenging the status-quo highlighted in [4].

For our final solution, we developed three different neural ar-
chitectures: (1) MLP with Session-based Matrix Factorization net
(MLP-SMF), (2) GRU with MultiStage Session-based Matrix Fac-
torization net (GRU-MS-SMF), and (3) XLNet with Session-based
Matrix Factorization net (XLNet-SMF). The final submission was a
simple ensemble (weighted average) of the predictions from models
of each of those three architectures.

2 PREPROCESSING AND FEATURE
ENGINEERING
The competition dataset from Booking.com challenge has a tabular

data structure, consisting of 1.5M of anonymized reservations of
269k trips. Each reservation is a part of a customer’s trip (identified
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by utrip_id) which includes at least 4 consecutive reservations. A
reservation contains the metadata and city/country information but
does not include information about the hotel. Thus, the sequence of
trip reservations can be obtained by sorting on the check-in date.

2.1 Data splitting for Cross-Validation

Unlike most competitions, this competition allowed only two sub-
missions per team - the intermediate one and the final one. It was
crucial to design a good the validation set, because it would be key
to select the best features and models for the final submission. We
used k-fold cross validation: predicting the last city of the trips on
the train set split into 5-folds. For each fold, the fold train data was
used as validation set, and data (both train and test) from the other
folds (Out-Of-Fold - OOF) was used to train the model. We used
the full OOF dataset, predicting the next city given previous ones.
The cross-validation (CV) score was the average precision@4 from
each of the five folds.

2.2 Feature Engineering

The original dataset has 9 features: user_id, utrip_id, checkin, check-
out, city_id (label), hotel_country, device_class, affiliate_id and
booker_country. For the last reservation of each trip of the test set,
the city_id and hotel_country were not provided.

In our initial experiments, building new features improved the
accuracy of our models. The main features included in our models
are listed in Table 2 in Appendix A. All features that used infor-
mation from other rows (e.g. user features, city features) were
computed OOF, to avoid leakage from the fold labels. Depending
on the architecture, a subset of the features were used.

We implemented our preprocessing and feature engineering
pipeline with RAPIDS cuDF, a library for GPU-accelerated dataframe
transformations.

2.3 Data augmentation with reversed trips

The dataset with 1.5M bookings is relatively small in comparison
to other recommendation datasets. We explored techniques to in-
crease the training data by data augmentation and discovered that
doubling the dataset with reversed trips improved model’s accu-
racy. A trip is an ordered sequence of cities and although there are
many permutations to visit a set of cities, there is a logical ordering
implied by distances between cities and available transportation
connections. These characteristics are commutative. For example, a
trip of Boston->New York->Princeton->Philadelphia->Washington
DC can be booked in reverse order, but not many people would book
in a random order like Boston->Princeton->Washington DC->New
York->Philadelphia.

2.4 Low frequency cities hashing

The distribution of the cities reservation frequency was long-tailed
as one would expect - some cities are much more popular for
tourism and business than others. To help the models not to focus
too much on very unpopular cities (city reservation frequency < 9 in
our case), we assigned their city id to a single value for training and
ensured that those cities were never ranked high during inference.
Such approach reduced the cardinality of the cities from more than
44,000 to about 11,000 cities (see Figure 4 in Appendix B).
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3 MODEL ARCHITECTURES

This section describes the final three neural architectures designed
for this competition, which were ensembled for the final submission.
Each architecture can be trained with a single NVIDIA V100 GPU.

As the cardinality of the label (city) is not large, all models treated
the recommendation as a multi-class classification problem, by
using softmax cross-entropy loss function. A common component
of all architectures was the Session-Based Matrix Factorization
(SMF) head, which is described in the next section.

3.1 Session-based Matrix Factorization head
(SMF)

Framing this problem under the recommender systems taxonomy,
the cities are the items we want to recommend for a trip. The trip
is analogous to a session in the session-based recommendation
task, which is generally a sequence of user interactions — hotel
reservations in this case.

For this competition, it was designed a Session-based Matrix
Factorization (SMF) head to produce the scores (logits) for all items,
instead of a regular Multi-Layer Perceptron (MLP) layer. This design
was inspired by the MF-based Collaborative Filtering, which learns
latent factors for users and items by performing a dot product of
their embeddings to predict the relevance of an item for an user.

The large majority of users had only a single trip available in
the dataset. So, instead of trying to model the user preference, we
used the last layer of the network to represent the session (trip)
embedding. Then, we compute the dot product between the session
embedding s and all the set I of item embeddings i, where i € I, to
model items relevance probability distribution r of each item (city)
being the next for that session (trip), such as r = softmax(s - I).

3.2 MLP with Session-based Matrix
Factorization head (MLP-SMF)

The MLP with Session-based Matrix Factorization head uses feed-
forward and embedding layers, and can be seen in Figure 1. Cat-
egorical input features are fed through an embedding layer and
continuous input features are individually projected via a linear
layer to embeddings, followed by batch normalization and Rectified
Linear Unit (ReLU) non-linear activation. All embedding dimen-
sions are made equal. The embeddings of continuous input features
and categorical input features, except the lag features, are combined
via summation. The output is concatenated with the embeddings
of the 5 last cities and countries (lag features).

The embedding tables for the city lags are shared, and similarly
for hotel country lags. The lag embeddings are concatenated, but
the model should still be able to learn the sequential patterns of
cities by the order of lag features, i.e., city lag1’s embedding vector
is always in the same position of the concatenated vector.

The concatenated vector is fed through 3 feed-forward layers
with batch normalization, Parametric Rectified Linear Unit (PReLU)
activation function and dropout, to form the session (trip) embed-
ding. It is used by the Session-based Matrix Factorization head
to produce the scores for all cities. More details can be found in
Appendix C.
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Figure 1: Visualization of MLP with Session-based Matrix
Factorization head architecture.

3.3 GRU with MultiStage Session-based Matrix
Factorization head (GRU-MS-SMF)

The GRU with MultiStage Session-based Matrix Factorization head
uses a GRU cell for embedding the historical user actions (previous
5 visited cities), similar to GRU4Rec [2]. Missing values (sequences
with less than 5 length) are padded with Os.

The last GRU hidden state is concatenated with the embeddings
of the other categorical input features, as shown in Figure 2. The
embedding tables for the previous cities are shared. The model uses
only categorical input features, including some numerical features
modeled as embeddings such as trip length and reservation order.

The concatenated embeddings are fed through a MultiStage
Session-based Matrix Factorization head. In The first stage is a
softmax head over all items, which is used to select the top-50 cities
for the next stage. In the second stage, the Session-based Matrix
Factorization head is applied using only the top-50 cities of the first
stage and two representations of the trip embeddings (the outputs
of the last and second-to-last MLP layers, after the concatenation),
resulting in two additional heads. The final output is a weighted
sum of all three heads, with trainable weights.

The multi-stage head works as a 2-stage ranking problem. The
first head ranks all items and the other two heads can focus on the
reranking of the top-50 items from the first stage. This approach can
potentially scale to large item catalogs, i.e., in the order of millions.
This dataset did not require such scalability, but this multi-stage
design might be effective for deployment in production. Training
details can be found in Appendix C.

3.4 XLNet with Session-based Matrix
Factorization head (XLNet-SMF)

The XLNet with Session-based Matrix Factorization head (XLNet-
SMF) uses a Transformer architecture named XLNet [7], originally
proposed for the permutation-based language modeling task in
Natural Language Processing (NLP). In our case, instead of modeling
the sequence of word tokens, we model the sequence of items in
the session (trip).

We have adapted the XLNet training task for Masked Language
Modeling (also known as Cloze task), like proposed by BERT4Rec

Predicted relevance for cities
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T Trip embedding #2

" Trip embedding #1

0 |

&% b

city_lag5 city_lag1 catt catN

Figure 2: Visualization of GRU with MultiStage Session-
based Matrix Factorization head architecture.

[6] for sequential recommendation. In that approach, for each train-
ing step, a proportion of all items are masked from the input se-
quence (i.e., replaced with a single trainable embedding), and then
the original ids of the masked items are predicted using other items
of the sequence, from both left and right sides. When a masked
item is not the last one, this approach allows the usage of privileged
information of the future reservations in the trip during training.
Therefore, during inference, only the last item of the sequence is
masked, to match the sequential recommendation task and do not
leak future information of the trip [6].

For this network, each example is a trip, represented as a se-
quence of its reservations. The reservation embedding is generated
by concatenating the features and projecting using MLP layers.

The sequence of reservation embeddings is fed to the XLNet
Transformer stacked blocks, in which the output of each block is
the input of the next block. The final transformer block output
generates the trip embedding.

Finally, we use the Matrix Factorization head (dot product be-
tween the trip embedding and city embeddings) to produce a prob-
ability distribution over the cities for the masked items in the se-
quence. Model hyperparameters can be found in Appendix C.

4 ENSEMBLING

Ensembling is a proven approach to improve the accuracy of models,
by combining their predictions and improving generalization.

We used the k-fold cross-validation and bagging (training the
model many times with different random seeds in our case) tech-
niques to ensemble models from our three architectures, as shown
in Algorithm 1 in Appendix D.

In general, the higher the diversity of model’s predictions, the
more the ensembling technique can potentially improve the final
scores. In our case, the correlation of the predicted city scores
between each two combinations of the three architectures was
around 80%, which resulted in a representative improvement with
ensembling in our final CV score.

In addition to ensembling the three models by averaging the
predictions, we also tried to add another ensembling layer: a model
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Figure 3: Visualization of XLNet with Session-based Matrix
Factorization head architecture.

to rerank the top 20 cities from the averaged predictions. That in-
sight came from the fact that the precision@20 of our averaged
predictions was 0.777, a much higher score than for the competi-
tion metric precision@4 (around 0.57) (see Figure 5 in Appendix
E). The reranker was a gradient boosted decision trees model for
binary classification of cities (0=incorrect, 1=correct last city of the
trip), having as input features the predictions from the averaged
predictions and additional features like the frequency of the city.

Our initial experiments showed promising results, with improved
precision@4 by 0.5%. Due to the lack of a public leaderboard and
only one final submission, we decided for the conservative ensem-
bling approach of weighted averaged predictions to rank the cities
for submission, as described in Algorithm 1 in Appendix D.

5 RESULTS AND DISCUSSION

To make it clear the contribution from each architecture and from
the ensembling algorithm for our final result, we present in Table 1
the cross-validation Precision@4 by architecture, individual and
after bagging ensembling, and the final ensemble from the three
architectures combined. We can notice that the XLNet-SMF was
the most accurate single model.

Interestingly, the MLP-SMF architecture achieved a CV score
comparable with the other two architectures that explicitly model
the sequences using GRU and XLNet (Transformer). In MLP-SMF
the embeddings of the last 5 cities are simply concatenated and
combined by MLP layers, while for the GRU-MS-SMF the last 5
cities are processed by a GRU layer, and for XLNet-SMF the last 15
cities are processed by the Transformer. As the MLP-SMF model was
lightweight, it was much faster to train than the other architectures,
which sped up its experimentation cycle and improvements.
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Single bag CV  Ensemble CV  Final LB

MLP-SMF 0.5667 0.5756
GRU-MS-SMF 0.5664 0.5762
XLNet-SMF 0.5681 0.5751

Final Ensemble 0.5825 0.5939

Table 1: Final results by architecture and for the final ensem-
ble - MLP-SMF uses 8 bags, GRU-MS-SMF uses 7 bags and
XLNet-SMF uses 5 bags.

As all three neural network architectures use the Session-based
Matrix Factorization head and the data augmentation by reversing
trips, we wanted to understand the contribution of each component
by a small ablation study. Table 3 in Appendix F summarizes the
results training the MLP architecture with and without the Session-
based Matrix Factorization head (MLP-SMF). We found out that the
SMF head improved the baseline by 2.1%.

Analogously, we trained the MLP-SMF model without and with
data augmentation and noticed an improvement of 0.8% (see Table
4 in Appendix F).

6 CONCLUSION

In this paper we presented our 1st place solution of the Booking.com
WSDM WebTour 21 Challenge. We designed three different deep
learning architectures based on MLP, GRU and Transformer neural
building blocks. Some techniques resulted in improved performance
for all models, like our proposed Session-based Matrix Factorization
head and the data augmentation with reversed trips. The diversity
of our architectures resulted in significant accuracy improvements
by ensembling model predictions.

We hope our final solution, which is provided on github.com?,
is useful to others in the RecSys field who build sequential recom-
mendation systems.
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A FEATURES

Feature Set

Features

original categorical
features

check-in and check-
out date features

sequence features

current trip stats

past user trips stats

geographic-
seasonal city
popularity

city_id, hotel_country, booker_country de-
vice_class, affiliate_id

day-of-week, week-of-year, month, isweek-
end, season, stay length (checkout -
checkin), days since last booking (checkin -
previous checkout)

first city in the trip, lagged (previous 5) cities
and countries from the trip

trip length (# reservations), trip duration
(days), reservation order (in ascending and
descending orders)

# user’s past reservations, # user’s past trips,
# user’s past visited cities, # user’s past vis-
ited countries

Features based on the conditional probabil-
ities of a city ¢ from a country co, being
visited at a month m or at a week-of-year
w, as follows: P(c | m), P(c | m,co), P(c | w),
P(c | w,co)

Table 2: Features used by at least one of the architectures.
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Figure 4: Distribution of frequency of city_id in train and
test dataset. Around 10,000 city ids appeared only once in
the dataset.

C TRAINING DETAILS

MLP-MF: In this architecture, embedding tables were initialized
with N ~ (0,0.01). Low frequent cities are ignored by Categorical
Cross Entropy loss. The model is trained with Adam optimizer for
12 epochs with a batch size of 1024, with a 1 cycle learning rate
scheduler.

GRU-MS-SMF: The model is trained with the Adam optimizer for
5 epochs, with a batch size of 512, and a learning rate step decay
schedule (1e-3, 1e-3, le-4, le-5, le-6). A variation of bagging is
applied by training the architecture 7 times with different seeds
and a slight variation of used input features. The final predictions
are generated by averaging the probabilities over all 7 models.
XLNet-SMF: It was stacked 4 XLNet Transformer blocks, with 4
heads each, with dimension 512. The model was trained for 30
epochs, with initial learning rate 2e-4 and linear decay. The batch
size was 128, where each training instance is a session (trip) trun-
cated to maximum length 15. For regularization, it was used dropout
0.1 and AdamW optimizer with weight decay of le-5. The masking
probability during training was 0.1, but ensuring that we always
have at least one masked item for each session (trip).
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D ENSEMBLING ALGORITHM

Algorithm 1: Ensembling algorithm

split data in k-folds;

for each architecture do

j = number of bags for this architecture;
for each fold in folds do
foriin[1,..,j]do

(OOF);
train model on OOF;

data;
predict last city of all folds of test data;
end

end

end

concatenate train and test out-of-fold data

evaluate model based on last city of in-fold train

ensemble by averaging over each fold and each bag;

ensemble by averaging over architectures;

E PRECISION@K

Precision@k

2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
k

Figure 5: Precision@k for top20 recommendations by en-
semble model.

F ABLATION STUDY

1 model CV

MLP 0.5550
MLP-SMF  0.5667 (+2.1%)

Table 3: Cross validation score for training MLP architec-
ture with and without the Session-based Matrix Factoriza-
tion head (MLP-SMF).
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1 model CV

MLP-SMF without data augmentation  0.5620
MLP-SMF 0.5667 (+0.8%)

Table 4: Cross validation score for training MLP-SMF with
and without data augmentation.
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